Strategies for solving Trigonometrical Equations

Trigonometrical equations can be categorised into **7 main groups**, of which 2 have sub-variations.

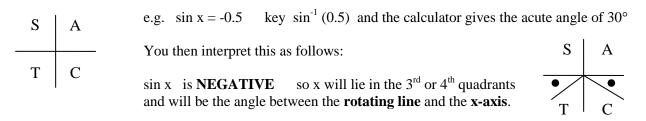
The groups are:	Type 1:	Simple re-arrangement
	Type 2:	Extended domain
	Type 3:	Change to Tangent
	Type 4:	Quadratic
		Simple Power
		Common Factor
		Trinomial
	Type 5:	Double Angle
		• Reduces to common factor
		Reduces to Trinomial
	Type 6:	Phase Angle
	Type 7:	Wave Function

In all cases the aim is to arrive at an expression of the form:

 $\sin x = \dots$ $\cos x = \dots$ $\tan x = \dots$

Which will result in **two** values for x.

These values are obtained by looking at the **sign** of the trig. function and using **All Sinners Take Care**.



So the solution in this case is: $x = 180^\circ + 30^\circ$ or $360^\circ - 30^\circ$ hence $x = 210^\circ$ or $x = 330^\circ$

The methods and strategies used, apply equally to radians and degrees.

Recall: $360^\circ = 2\pi$ radians or $180^\circ = \pi$ radians

A table of Exact Values and compound angle formulae are shown below

Degrees	30°	45°	60°
Radians	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sin	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
tan	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

$\sin (\mathbf{A} + \mathbf{B}) = \sin \mathbf{A} \cos \mathbf{B} + \cos \mathbf{A} \sin \mathbf{B}$		
$\sin (\mathbf{A} - \mathbf{B}) = \sin \mathbf{A} \cos \mathbf{B} - \cos \mathbf{A} \sin \mathbf{B}$		
$\cos (\mathbf{A} + \mathbf{B}) = \cos \mathbf{A} \cos \mathbf{B} - \sin \mathbf{A} \sin \mathbf{B}$		
$\cos (\mathbf{A} - \mathbf{B}) = \cos \mathbf{A} \cos \mathbf{B} + \sin \mathbf{A} \sin \mathbf{B}$		
$\sin 2\mathbf{A} = 2\sin \mathbf{A}\cos \mathbf{A}$		
$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$		
$\cos^2 \mathbf{A} + \sin^2 \mathbf{A} = 1$		
$\tan A = \frac{\sin A}{\cos A}$		
COS A		

We will now look at each of the 7 types and the strategies for solution.

Type 1:Simple re-arrangement

e.g. $2 \sin x = 1$ $\sqrt{3} \tan x + 1 = 0$ $\cos x = 0.5$

These can be recognised by the fact that all it takes is a simple algebraic re-arrangement to obtain $\sin x = \dots \cos x = \dots \tan x = \dots$

 $\sqrt{3} \tan x + 1 = 0$ $2\sin x = 1$ $\cos x = 0.5$ $\sin x = 0.5$ $\tan x = -1/\sqrt{3}$ $\cos x = 0.5$ (already in required form) acute $x = 30^{\circ}$ acute $x = 30^{\circ}$ acute $x = 60^{\circ}$ Using ASTC gives $x = 30^{\circ} \text{ or } 150^{\circ}$ $x = 150^{\circ} \text{ or } 330^{\circ}$ $x = 60^{\circ} \text{ or } 300^{\circ}$ $(1^{st} \& 2^{nd} \text{ quadrants})$ $(2^{nd} \text{ and } 4^{th} \text{ quadrant})$ $(1^{st} \& 4^{th} \text{ quadrant})$

Type 2: Extended domain

e.g. $\sin 2x = -1/\sqrt{2}$ $0 \le x \le 360^{\circ}$

These can be recognised by the '2x', and no other trig. function involved. These should not be confused with the double angle type, where another trig. term is present.

 $\sin 2x = -1/\sqrt{2}$

acute $2x = 45^{\circ}$ However $0 \le 2x \le 720^{\circ}$ we need to consider twice the domain of x Using ASTC gives $2x = 225^{\circ}$ or 315° or 585° or 675° (3rd and 4th quadrants in first and second revolution) Thus $x = 112.5^{\circ}$, 157.5° , 292.5° or 337.5°

Type 3: Change to tangent

e.g. $3\sin x = 2\cos x$ or $3\sin x - 2\cos x = 0$ $0 \le x \le 360^{\circ}$

These can be recognised by the presence of sin x and cos x only – with no constant term.

Divide both sides by $\cos x$ and use simple re-arrangement to give:

tan x = 2/3acute x = 33.7° Using ASTC gives x = 33.7° or 213.7° (1st & 3rd quadrants)

Type 4: Quadratic

There are 3 forms of quadratic:

a) Simple power

e.g. $4\cos^2 x = 1$ or $4\cos^2 x - 1 = 0$ Recognise by squared term = constant

Re-arrange to give $\cos^2 x = \frac{1}{4}$ Take square roots of both sides – don't forget \pm values

 $\cos x = +1/\sqrt{2}$ or $\cos x = -1/\sqrt{2}$

note that there will be **up to 4 solutions**

acute $x = 45^{\circ}$

Using ASTC gives $x = 45^{\circ}$ or 315° (1st & 4th quadrants) and $x = 135^{\circ}$ or 225° (2nd & 3rd quadrants)

b) Common Factor

e.g.	sin x c	os x - sii	$\mathbf{x} = 0$	Recognise by no constant term and $sin x cos x$ and either a $cos x$ or $sin x$ on its own.
	Take o	out comn	non factor	
	sin x (cos x –	1) = 0	
	So		$\sin x = 0$	
		or thus	$\cos x - 1 = 0$ $\cos x = 1$	

Solve in the usual way – find acute angle then use ASTC Note again there will be **up to 4 solutions**.

c) Trinomial

e.g. $4 \sin^2 x + 11 \sin x + 6 = 0$ Looks like a quadratic equation in either sin x, cos x or tan x

This type can appear in combinations of: $\sin^2 x$ and $\sin x$, $\cos^2 x$ and $\sin x$, $\sin^2 x$ and $\cos x$ or $\cos^2 x$ and $\cos x$

If both cos and sin appear, then use the identity $\sin^2 x + \cos^2 x = 1$ to make the squared term the same as the other term.

From this point – put the equation into 2 brackets: $(4 \sin x + 3)(\sin x + 2) = 0$

then equate each bracket to 0

so $4 \sin x = 3$ $\sin x = \frac{3}{4}$ or $\sin x = -2$ not possible so discard this option.

Continue as previously, finding acute angle, then using ASTC. Note again, that there will be **up to 4 solutions**

Type 5: Double Angle

There are 2 forms:

a) Reduces to common factor form

e.g.	$\sin 2x - \cos x = 0$	Always contain sin 2x and never have a constant term .	
	Replace sin 2x using:		
	and we obtain: 2 sin	$x \cos x - \cos x = 0$	

continue as you would with the common factor form of type 4.

b) Reduces to trinomial form

e.g.	$\cos 2x + \sin x = 0$	Always contain $\cos 2x$ and either $\sin x$ or $\cos x$
		Constant term may or may not be present.
	Replace cos 2x using: co	$\cos 2x = 2\cos^2 x - 1$ or $1 - 2\sin^2 x$
	obtain:	$1 - 2\sin^2 x + \sin x = 0$
	re-arrange to:	$2\sin^2 x - \sin x - 1 = 0$
	Factorise into 2 brackets:	$(2 \sin x + 1)(\sin x - 1) = 0$

Proceed as trinomial form of Quadratic type.

Type 6: Phase Angle

e.g. $\cos (x + 20) = 0.4$ or $\cos(x + 20) - 0.4 = 0$ Basically same as simple re-arrangement type 1 $x + 20 = \cos^{-1} 0.4$ so acute $(x + 20) = 66.4^{\circ}$ Using ASTC gives $x + 20 = 66.4^{\circ}$ or $x + 20 = 293.6^{\circ}$ So $x = 46.4^{\circ}$ or 273.6°

Type 7: Wave Function

e.g. $2\cos x + 3\sin x = 1$ Recognise by both sin x and cos x being present AND a constant term. Put in the form $R\cos(x \pm \alpha)$ or $R\sin(x \pm \alpha)$ - you will be told which to do in the question. Expand out using compound angles: (assume) $R(\cos x - \alpha) = R \cos x \cos \alpha + R \sin x \sin \alpha$ Compare coefficients, R cos $\alpha = 2$ R sin $\alpha = 3$ $R^2 = 2^2 + 3^2$ $R^2 = 13$ $R = \sqrt{13}$ Square and add to get R: $\tan \alpha = 3/2$ acute $\alpha = 56.3^{\circ}$ Divide the sin by cos expression to get: Use information from $\mathbf{R} \cos \alpha = 2$ and $\mathbf{R} \sin \alpha = 3$ to deduce α is in 1^{st} quadrant Now replace $2\cos x + 3\sin x$ with $R\cos (x - \alpha)$ using $R = \sqrt{13}$ and $\alpha = 56.3^{\circ}$ So we get: $\sqrt{13} \cos(x - 56.3^\circ) = 1$ Re-arrange to get $\cos(x - 56.3^\circ) = 1/\sqrt{13}$ and proceed as Type 6: Phase Angle

Type 1: Simple Re-arrangement

- a) Sin x, $\cos x$, $\tan x = 1, 0, -1$, exact values, decimals, any constant
- b) $2 \tan x + 1 = 0$ etc.

Type 2: Extended Domain

- a) $\sin 2x, \cos 3x = \text{constant}$
- b) $\sin 3x + 1 = 0$ etc.

Type 3: Change to Tangent

- a) $\sin x = \cos x$
- b) $2\sin x = 3\cos x$
- c) $3\sin x 2\cos x = 0$

Type 4: Quadratic

- (i) Simple power
- a) $2\sin^2 x = 1$
- b) $2\cos^2 x + 1 = 0$

(ii) Common Factor

- a) $\sin x = \sin x \cos x$
- b) $3\cos x 2\sin x \cos x = 0$

(iii) Trinomial Form

- a) $4\sin^2 x + 11\sin x + 6 = 0$
- b) $5\sin^2 x 2 = 2\cos x$
- c) $6\cos^2 x \sin x 5 = 0$

Type 5: Double Angle

- (i) Reduces to Common Factor
- a) $\sin 2x \cos x = 0$
- b) $\operatorname{Sin} 2x + \sin x = 0$

(ii) Reduces to Trinomial form

- a) $\cos 2x + \cos x = 0$
- b) $\cos 2x + \sin x = 0$
- c) $\cos 2x 7 \sin x 4 = 0$
- d) $\cos 2x 5 \sin x = 2$

Type 6: Phase Angle

a) $\cos (x + 20) = 0.4$ $\sin (x - 15) = 1/\sqrt{2}$ b) $2 \sin (2x - 60) = 1$

c) $3\cos(3x+40) + 1 = 0$

Type 7: Wave Function

- a) $\cos x + \sin x = 1$
- b) $2\cos x + 3\sin x = -1$
- c) $3\cos 2x + 4\sin 2x + 1 = 0$

Mixed Examples: - Identify the type first

1.	$2\sin x + \sqrt{3} = 0$	$0 \le x \le 360^{\circ}$
2.	$6\cos^2 x - \sin x - 5 = 0$	$0 \le x \le 360^{\circ}$
3.	$\cos 2x + 5\cos x - 2 = 0$	$0 \le x \le 360^{\circ}$
4.	$\sin(x - \pi/2) = 0.5$	$0 \leq x \leq \pi$
5.	$\sqrt{3} \tan\theta + 1 = 0$	$0 \le \theta \le 2\pi$
6.	$\sin 2x - \cos x = 0$	$0 \le x \le 360^{\circ}$
7.	$\sin 3x = \sqrt{3/2}$	$0 \le x \le 360^{\circ}$
8.	$\sin 2\theta - \sin \theta = 0$	$0 \le \theta \le 2\pi$
9.	$2\sin(2x + \pi/3) = 1$	$0 \leq x \leq \pi$
10.	$2\cos 2x - 3\cos x + 1 = 0$	$0 \le x \le 360^{\circ}$
11.	$\tan^2\theta + \tan\theta - 12 = 0$	$0 \le \theta \le 2\pi$
12.	$\cos 3x = 0$	$0 \le x \le 360^{\circ}$
13.	$\sqrt{3}\cos x - \sin x = 0$	$0 \le x \le 360^{\circ}$
14.	$6\cos 2\theta - 5\cos \theta + 4 = 0$	$0 \le \theta \le 2\pi$
15.	$4\cos^2 x - 1 = 0$	$0 \le x \le 360^{\circ}$
16.	$\cos x + \sin x = 1$	$0 \le x \le 360^{\circ}$
17.	$15\cos^2\theta + 7\cos\theta - 2 = 0$	$0 \le \theta \le 2\pi$
18.	$4\cos(2x+40) = 3$	$0 \le x \le 360^{\circ}$
19.	$3\cos 2x + 4\sin 2x + 1 = 0$	$0 \le x \le 180^{\circ}$
20.	$\cos \theta - \sqrt{3/2} = 0$	$0 \le \theta \le 2\pi$

	Answers		
1.	240°, 300°		
2.	19°, 161°, 210°, 330°		
3.	60°, 300°		
4.	2.1 radians		
5.	$5\pi/6$, $11\pi/6$ radians		
6.	30°, 90°, 150°, 270°		
7.	20°, 40°, 140°, 160°, 260°, 280°		
8.	0, $\pi/3$, π , $5\pi/3$, 2π radians		
9.	0.8, 2.9 radians		
10.	0°, 104.5°, 255.5°, 360°		
11.	1.82, 4.96, 1.25, 4.39 radians		
12.	30°, 90°, 150°, 210°, 270°, 330°		
13.	60°, 240°		
14.	0.8, 1.8, 4.5, 5.4 radians		
15.	60°, 120°, 240°, 300°		
16.	0°, 90°, 360°		
17.	1.37, 4.91, 2.30, 3.98		
18.	1°, 139°, 181°, 319°		
19.	77°, 156°		
20.	$\pi/6$, $11\pi/6$ radians		